
Production of Domain Oriented Graphic Modeling
Environments

Bassem KOSAYBA, Raphael MARVIE, Philippe MERLE, Jean-Marc GEIB

Laboratoire d’Informatique Fondamentale de Lille

UPRESA CNRS 8022

59655 Villeneuve d’Ascq

{kosayba,marvie,merle,geib}@lifl.fr

16 May 2003

Abstract

Modeling environments dedicated to specific domains clearly increase the produc-
tivity of their users compared to general modeling environments. (especially in the
domains where the life of the products is very short). This paper present a meta-tool
for generating a graphic modeling tool from a domain’s specification.

1 INTRODUCTION

Most current graphic environments which help designers to express their models are rather
general and they are aimed at a large number of domains. Thus, they are never really
adapted to a specific domain. These environments do not take the specifities of the domains
into account and thus must be adapted. Without adaptation, these environments have an
impact on the design of the solution suggested by the user. This latter must express the
concepts of his/her particular domain using the concepts proposed by the general modeling
tool. It becomes significant to specialize the modeling environments for the user’s needs.
The concepts provided by these environments must be watching those of the user’s domain.
In other words, the environment must be adapted to the user’s domain instead of the user
adapts himself to the environment. Domain oriented environments become availables, but
they are often produced manually. Their development is complex and expensive. This
approach has two limitations:

• The development process is repeated for each domain (a new tool has to be devel-
oped).

1

• The modeling tool manually produced often map its models to a single technology of
implementation. When this technology evolves, a new tool thus should be produced
because the part that map model to this technology is hardly coded in the tool’s
program body.

The speed of the development and the quality of the software are very important.
Therefore, our goal is to provide a meta-tool to produce automatically graphic modeling
tools in order to assist thedesign of applications in a specific domain. This meta-tool needs
a specification of the target domain for which one requires to provide a graphic modeling
environment. This specification is the domain’s concepts, and relations between these
concepts. These concepts and their relations vary from a domain to another and can be
expressed using meta-modeling.
Moreover, we want the generated graphic tool to be able to produce abstract models
independently of technologies of implementation and then to map them to technologic
models (for existing technologies or to come). This makes it possible to capitalize models
and to follow evolutions of technologies.

In this paper, we present a proposition in order to systematically generate a graphic
tool adapted to the user’s needs, starting from a meta-model expressing the concepts of a
specific domain, and independent of technologies. Section 2 shows the means used to realize
our goal. Section 3 presents our motivations and our work. Finally, section 4 concludes
this paper.

2 from META-MODELs to SPECIFIC DESIGN LAN-

GUGES

2.1 Our choice : Meta Modeling

A meta-model is used to express the concepts of a specific domain and their interactions.
It can be seen as a language making it possible to describe a particular domain. The
domain oriented environments use only the domain concepts to define models. So, these
environments can follow the rules of the meta-model in order to define models according
to the domain’s specification.

2.2 The MOF(Meta Object Facility)

MOF is the OMG standard for meta-modeling. The MOF is defined as a four levels archi-
tecture. Each level contains information describing the lower level. The application which
is being executed, is a group of elements which interact together (M0). These elements and
their relations are described at the level of the model (M1). For example, the source of a
program is a model which defines the interactions between its components. For describing
the model of an application based on components, concepts are required as ”component”,
”port”, ”connection”, etc. These notions are defined at the meta-model level (M2). This

2

latter is based on the concepts of the MOF (”class”, ”association”, etc.) that are used to
describe the concepts necessary to describe models.
Moreover, the MOF provides rules to produce repositories from meta-models. This ap-
proach offers means to represent and to store models in the form of an instanciation of
the classes of the meta-model. Each repository has an API defined (Mapping) that can be
produced automatically.

2.3 The ModFact project

ModFact follow the MOF rules in order to produce a model repository from a meta-mode.
Therefore, this repository can be part of a specific modeling environment but there is not
a graphic interface to assist this repository (to handle the model stored in this repository
or to build it in).

3 PROPOSITION

3.1 Motivation

The models built using directly visual forms which are representations of the domain
concepts are easier to be understood and expressed by the people who work in this domain.
The repository generated by ModFact is a modeling environment that follows the domain
concepts defined in the meta-model and it offers only these concepts to users. So, we work to
do a meta-tool which allows, starting from a MOF meta-model to obtain a graphic interface
which assists the design in a particular domain and interact with the mdel repository from
ModFact.

Also, we search to pass from the model to the code of several technologies of implemen-
tation. So, we think that the models produced by these environments will be abstracts,
in a way that allow us to map them towards several technologies of implementation (Java,
CCM, ..etc.).

3.2 Our Meta-Tool

In the oriented domain graphic modeling environments, the graphic interface must pro-
vide a visual form for each concept of the specific domain, and operations to handle these
forms. So, we implement a meta-tool that generates a graphic interface starting from a
meta-model. In the context of this meta-tool, we propose that the representation of a
meta-model concept is fixed according to the MOF concept used to define this meta-model
concept. For example, each meta-model’s concept defined using the concept ”class” in
MOF, has a graphic representation as a rectangle containing the name of this meta-model
concept. Also, our tool is able to answer all MOF concepts and their interlacing like in-
heritance between classes, classes composed in others and it present operations to assign
the values to the attributes and operations to check if the model is well formed or not

3

according to the meta-model, for example the generated graphic interface checks if the
model entities respect the multiplicity relations ”1..*” ”m..n” between them.

We have associated one or several graphic components to each MOF concept. The
nomber and the nature of those graphic components depend on the nature of the MOF
concept (”class”, ”association”, ”class composed in another” etc.). And, we organized
those graphic components in templates. Our meta-tool detect the MOF concepts existing
in a meta-model and generate the graphic components according to each MOF concept.
The generation of those graphic components is done by using the according templates using
the properties (name, attributes, etc.) of those MOF concepts.

domain of applications
expressing a specific

Meta−Model

The
 Meta−Meta−Model

MOF

The Model Repository
Generateur

(from ModFact)

Our Meta−Tool

(The Graphic interface
 Generateur)

The Model Repository

Model

The Graphic tool

that allow to build models
according to M2 for a specific

 domain

Templates

Pieces of code
of graphic

components

Graphic Modeling Environment for the Domain specified by the Meta−Model

Figure 1: General View

The next step is to bind our generated graphic interface to the repository generated by
ModFact. The goal is to generate a graphic modeling tool that is able to store the model
built graphically in the form of objects. Such, we can easily (graphically) build the models
and map them to the technologies of implementation (mapping from abstract model in the
form of objects to pieces of code for technologies).

4 CONCLUSION

This paper discusses the limitations of the current proposals, that it is in the form of
general modeling environments or in the form of graphic modeling tools oriented domains
but manually developed. Therefore, we try to produce graphic modeling tools oriented
domains. This paper discusses a meta-tool to generate graphic interfaces to assist the
model repositories generated by ModFact project in order to create domain oriented graphic

4

environments. We are planing also to specialize the environment to the user (the user can
choose his/her own graphic representations for the concepts of his/her specific domain).

References

[1] Mikael Peliter Transformation entre un profil UML et un meta-modele MOF.

[2] R. Marvie Separation of Concerns in Modeling Distributed Component-based Architec-
tures, In Proceedings of the 6th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2002), EPFL, Lausanne, Suisse, September 2002.

[3] OMG Meta Object Facilty (MOF) Specification v1.3, Object Management Group, mars
2000.

[4] X. Blanc The Specifications Exchange Service of an RM-ODP Framework, In Proceed-
ings of the 4th International Enterprise Distributing Object Computing Conference
(EDOC’00), IEEE Press, Germany, September 2000.

[5] Carine Courbis, Pascal Degenne, Alexandre Fau, Didier Parigot L’apport des technolo-
gies XML et Objets pour un gnrateur d’environnements: SmartTools,

5

